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Abstract : This paper examines properties of test statistics for random effects with incomplete
panel data. We can divide incomplete panel data into two groups. One group arises from randomly
missing or unbalanced data and the other arises from systematically missing data. We focus on the
former case. Some statistical properties when there are missing independent (explanatory) variables
in regression analysis are well-known. Many procedures such as imputation have been proposed to
deal with missing independent variables, but few of them are practical to use in empirical analysis.
For the dependent (explained) variable, we may use the procedures developed for limited dependent
variable analysis. However, we often face the situation that we are not able to apply such procedures
since we do not have any appropriate exogenous variables for the missing dependent variable. A simple
approach to treat missing observations is to just discard the missing cases, but such approach may be
highly inefficient. In this paper, instead of discarding the missing cases, we consider the missing data
to be the outcome of a random variable. The test statistic for random effects with randomly missing
panel data is derived. We examine the statistical properties of the derived test statistic and compare
it with test statistics derived without randomness. We find that our test statistic is conservative in
comparison with the test statistic derived without randomness.
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1. INTRODUCTION incomplete panel. This test statistic is based on

the conditional distribution given the observa-
We rarely have complete panel data although tions. On the other hand, test statistic proposed
we have fancy statistical techniques. In the case in this paper is an unconditional one.

of household surveys, some respondents do not
answer all the items of a questionnaire. For
stock and corporate bond analysis, several firms
drop out from our data list for some reason such
as bankruptcy or default. We frequently use
a filling in or imputation method for missing
values. However, this method can lead to bi-
ases in statistical inference when the imputed
values are different from the true (unknown)
missing value. For the dependent variable, we
may use a model based on limited dependent
variable method. Unfortunately, we do not al-
ways have the appropriate exogenous variables
to construct a probit or tobit model for the 2. MODEL AND NOTATION
missing dependent variable. Another standard
method for missing value is to discard all the in-
complete cases. Although this approach is quite

One object of this paper is to determine the
statistical properties of the test statistics that
is proposed for the ideal situation and also de-
rive a more robust test when we do not have
complete panel data. The outline of this paper
is as follows. Section 2 details the model and
notation. Section 3 develops the new test statis-
tics and its asymptotic properties. In section 4,
some Monte Carlo experiments are conducted to
compare several test statistics. Section 5 con-
tains some concluding remarks.

We consider an error components model

!
it = o+ I; Us; 1
simple and easy to implement, we should not Yit + @50+ i, (1)
neglect the possibility of selection biases. Uig = pitVig, (2)
Baltagi and Li [1990] proposed a statistic for i=1,...,Nand j =1,...,T, where z; is a
testing for individual effects in the case of an k x 1 non-stochastic vector of explanatory vari-
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ables. The error term u;; consists of two errors,
p; and v; ¢, which indicate the individual effect
of i-th component and the remainder effect, re-
spectively. For simplicity, we do not treat the
time effect in our analysis. We can construct a
model with both individual and time effects as
in Baltagi and Li [1990].

We assume that p; and v;; are identically,
independently normally distributed with zero
mean and variances o2 and o2. Obviously u;;
is i.i.d. normal with mean zero and variance
0% = oﬁ +02. This normality assumption is not
necessary for the results in the following sec-
tions. We will assume that the usual regularity
conditions for the error terms instead of the nor-

mality assumption.

The hypothesis being tested is that the variance
component for the individual effect, aﬁ, is zero,
that is,

Hozaz=0 and’;‘-la:az>0. (3)

Instead of discarding the incomplete cases, the
standard method for dealing with missing val-
ues in empirical research, we treat the incom-
plete cases as randomly missing cases to avoid
incorporating biases cased by discarding the in-
complete cases in statistical inference.

To handle incomplete panel data, that is, ran-
domly missing observations, we introduce a
Markov chain {m; .} that takes the value zero or
unity. This approach is also used in Nishino and
Yajima [1999] to consider the unit root process
with missing observations. There is an alterna-
tive treatment of time series with missing values
such as Toda and McKenzie [1999].

If {m;, = 1}, then the process is in state 1. In
state 1 the observation set for the i-th individual
at time ¢ is available. If {m;; = 0}, then the
process is in state 0 the missing case. That is,

1 y;: and z;; are observed,
My = (4)
0 otherwise.

Using the variable {m,.}, we rewrite (1) as a
model with missing observations

* _ * *
Yir = zi,t6+ui,t (5)
where yf, = mieyie, 27 = mid( 1 T(4), 6 =
IAY)
(a B') and Ul = My U g

We suppose that the transition probabilities
are p; = Pr(myy = 1 | myy1 = 1) and
g = Pr(mi; = 1| m;;—1 = 0) for each ¢ and
t=1,--+,T and assume that 0 < p; < 1 and
0 < ¢; < 1. The case ¢; = 0 for all 7 is excluded.

Let P; be the matrix of one-step transition
probabilities for the i-th individual given as

Pi=<1_‘” ‘Ii). (6)

1-pi p

Define the first moment of m;; as ¢;, then we
can easily obtain

q; (7)

—E[m, )= —%
¢ = Blmi] 1-p+a

The second moment of m;; is

E[mimjs_s |
¢i:072n,i+¢12 (i=3, s=0),
=¢ ¢iri(s) (i=371<s<T-1), (8)
¢i ¢j ('L 7é j, all S)

where 7;(s) is P[m;s = 1 | mis—s = 1] which is
the (2,2)-element of the matrix of s-step tran-
sition probabilities for the i-th individual P?.
The matrix P{ can be obtained by multiplying
the matrix P; by itself s times. See Taylor and
Karlin [1993] for details.

The model (5) is rewritten in vector form as

Yy =Z"%+u*, u*~N(O, W), (9

x *l Kl *I\/ Y ’

where Yy = (ylay21""yN), Z*—(Z{, Z;a
2 YA R S R Ay

ey ozy ), ut =y, uy', -+, uN). yf and

u; are T'x 1 vectors whose ¢-th elements are y},
and uj,, respectively. 2} is a T' x (k+ 1) matrix
whose ¢-th row is 2],.

The error term u* is

*
[ 2}
*
* I“l‘2 ’U; * ¥
U = . + . =pu + v,
BN uN

where pf and v} are T x 1 vectors whose t-th el-
ements are m; ;ut; and m; ; v, respectively. The
second moment matrices of y* and v* are as fol-
lows.

M; 0 - 0

. % 0 M :
Blpp"l=on¢:| ?

’ : ‘. 0

0 0 My

where the sub-matrix M; is

7‘1‘(0) ri(l) ri(T - 1)
Mi _ ’I‘i(.l) ’I‘i(O)
: ’I‘,L(].)
’I',L(T— 1) 7‘7,(1) 7'1,(0)
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and
olr 0 0
E[ ’U*’U*I] — 0_12) 0 ¢ZIT
: . 0
0 0 onIr
Then, we have
W; 0 0
E[u*u"] = 0 W, = W.
: .0
0 0 Wy

The covariance matrix W is a block-diagonal
whose i-th block is W; = ¢ (02 M; + o2 It).

3. TEST STATISTIC

In this section, we derive a new test statistic for
the individual random effect using the estima-
tors of the variance components. The hypothe-
sis being tested is Ho : 02 = 0.

3.1 Estimators of Variance Components

The structure of the variance-covariance matrix
W allows us to estimate the variance compo-

nents oﬁ and o2 as shown in following lemma.

Lemma 1. If ¢; and #;(s) are consistent esti-
mators of ¢; and ri(s), respectively, then the
variance components o2 and o? can be esti-
mated consistently as

It Tt

¥ ( Iy ® 1717)8* — 4*'d

= 10
2 23;11(71 — ) Zi1 ®; Ti(s) (10

A2_
G, =

and
_ 1
T Zzlil dA’i

where 4* is the OLS residuals and (131- is a con-
sistent estimator of ¢;.

6'2

{a¥a* }, (11)

Proof. For the OLS residuals 4*, we have
1 * *
W NTU ,U = Op(l).

Since the expectation of the random variable
ui? is E[u}f] = (Uz +03) ¢ o2 ¢;, we have

Axl o~k

N T
1 w/ ok _ 1 1 *2
NT Y T NZ;Thf“
1 N
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If a consistent estimator of ¢; is available, the
consistency of the variance component estima-
tor &2 is readily shown as

1

~92 _— X -
Q/N)YL, ¢ NT
1

WS 6

0.2

P

= as T — oo,

where ¢h>i is the consistent estimator of ¢;. The
consistent estimator of ¢; will be given later. It
is noted that the consistency of 4% holds as NT
goes to infinity if ¢; = ¢.

Next, we will show the consistency of 6,2, Since
u*( Iy ® 1717)u* can be written as

N

>

i=1

T T-1 T

*2 * ok
E Uy + 2§ E Us Uipj | »
t=1

3=1t=j+1

it is easy to see that v*'{Iy ® 171 — InT}
u*/{NT(T — 1)} takes the form
202 ZT_I

TN T —s) N, ¢iri(s) N
NT(T —1)

op(1)- (12)
Multiplying both sides of (12) by NT(T — 1)/
{2 ZZ:II(T ~8) Zf;l ¢;ri(s)}, we obtain

u*'(IN ®R 1T1{r — In7)u*

25T T —8) S, dirals)

We have to estimate the unknown parameters
¢; and r;(s) consistently in order to obtain the
variance component estimators of o2 and o?.
The moments (7) and (8), that is, ¢; = E[ m |
and d)i"‘i(s) = E[ mM;,tMy t—s ]7 s = 11" ) 1T -
1, lead to simple consistent estimators for the
unknown parameter ¢; and 7;(s) as

T
R 1 T;
¢i = T Z mit = 7+ (13)
i=1
— 1 &
(}5,"!‘,‘(3) = T tZ;I m; tMit—s, (14)

where Tj is the number of observations for each
i. It is natural to define T; as E;‘rzl Myt

The consistency of these estimators of ¢; can
be easily shown using the Strong Law of Large
Numbers. Unfortunately, the consistency of
(14) does not hold when s is not fixed.

We should provide other estimation method to
avoid such difficulties. It is noted that ¢; =



a:/(1 — p; + q;) and r;(s) = (2,2)-th element of
P:. p; and g; defined in (6) compose the matrix
of s-step transition probabilities P?.

Estimation consists of two steps. First we es-
timate the transition probabilities p; and g;.
Then, we obtain estimators of ¢; and r;(s) by
substituting consistent estimators of p; and g;
into ¢; and r;(s). We obtain p; and §; to solve
following two equation.

Zt oMt i1

(1) = P =
Zt 1M
ZtT—g Mgt Mit—1
= = : : 15
111: ? ( )
7(2) = &(1-p)+p (16)
Explicitly
. ZT—z Mi¢ Mit—1
3 = 2 2 1
P T, (17)
G = T: - Zt oMt Tyt 1 (18)

T-T;

It should be noted that ¢; = 1 and #;(s) = 1 for
all s where T; = T, that is, there is no missing
observation.

3.2 Construction of Test Statistic

We provide a lemma for the asymptotic nor-
mality for u*(Iy ® 171 — Inr)u* for the
construction of the test statistic.

Lemma 2. Assume that D; is a positive con-
stant where

T—1
lim

Jim s ST - 9)0un(s),

s=1

D;

and define D = limy_,oo N1 Zfil D;. Under

the null hypothesis, that is 0% = 0 and 0® = o2,

*/

w( Iy ® 1714 )u* — u*'u
202/NT(T - 1)

as N and T go to .

&

Proof. It is noted that ¢;r;(s) is positive and
‘less than unity. Thus, the assumption about D;
is natural. Define a T x T' matrix as

0 1 1
A= 1 0

: L1

1 1 0
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Then, v*'( INn®171%)u* — u*'u* can be written
T

as follows
A O 0
N
u* 0 A u* = Z a; (19)
: .0 im1
0 0 A

where af = u}’Au}. Under the null hypothesis,

02 =0, we have

Bla}] =0, (20)
and
’ T-1
Var[al] = 402 Z(T—3)¢i7'i(s)- (21)

s=1

It is obvious that the expectation of a} is

Ela}]=202 {Z(T—s>¢m(s>} (22)

under the alternative hypothesis. Define

1
T(T —

*_
;=

*

a; .
1 "

Since b} is independent random variable whose
expectation is E[ b} | = 0 and variance is

5 o2 (23)

V(IT‘[ b,,: ] = — 1) Z 5)¢1Tz
= Dz‘+0( ),
and
lim — ZD
Nl—I)noo

*I

we can apply a central limit theorem for
I N® lTlT)'u, i

\/_ Z 202/NT(T — 1)

We are now going to construct a new test statis-
tic for individual effects for incomplete panel
data using the ratio of 62 and 42

Theorem 1. Define p = 62/6%. Under the
null hypothesis Ho : 0, = 0, the new test statis-
tic T is asymptotically distributed as standard
normal.

u

N T-1
T = ZZ — S ¢1Tz ) X /3
i=1 s=1
d
= N(0,1)

where 62 and 6% are defined earlier.



Proof. The test statistic 7 can be rewritten as
BV STNT - 5) diis) 2
2
\/Zi:l T — l)Di 7
1
T
V % Ei— D;
{a¥( Iy ® 171)a* — ava* }
262\/NT(T —1)
It is easy to see that 62 is converges to o2 un-
der Hy, D; is a consistent estimator of D; and

ZZN=1 Di/N converges to D. Thus, Lemma 2
and its proof complete the proof of theorem.

1.9

T =

In particular, the use of b =T, /T allows us
to have a relationship between our 7 and the
test statistic derived in Baltagi and Li [1990]
denoted as 7BL. The test statistic 78F is for
the two-way error component model, however
it can be used for the one-way error compo-
nent model. In such a case, the test statistic
is asymptotically distributed as x?. Since the
alternative hypothesis should be one sided, we
now compare the square root of the test statis-
tic 7BL for the one-way error component model
and our new test statistic 7.

Corollary 1. In the case of ¢; = T} /T the ra-
tio of TBL and T does not depend on 0 . Thus,
the power of the two test statistics is same Fur-
ther if we assume that p; and g; are known, then
we have an inequality between T and TBL such
that

r < 1B (24)

The equality holds when T; = T for all i, that
is, when there is no missing date for all series
i.

Proof. Although different notations are used in
Baltagi and Li [1990], it is easy to see that the
ratio of the squared statistics can be rewritten
as

(rBL)z _ 2 Y (U 2)7 defi(s)
T Zi:l ¢i(¢i - T)

It is clear that this ratio depends only m;;
which is introduced to handle missing observa-
tions. Next we show that this ratio is greater
than 1 when p; and g¢; are known which leads

to 7;(s) = ri(s). The variance of the random
variable T;/T is

Varl 2] = E[(3)?] - (B4 )V

= {22 d’z"'Z( ) — dilds — %)}

Using the form of Var[T;/T |,

N 7 N 1
ZV‘"‘[ T ] Z¢i(¢i - T) (25)

{ 2 S (1= $)% durils) 1}
Zz—l ¢1(¢1 = %)
Since (25) holds for any value of ¢; between zero

and unity, the ratio (73L/1)? is greater than
unity.

> 0.

Generally, the ratio 75Z/7 would be greater
than unity even when we use consistent estima-
tors instead of the true value of r;(s), though
the difference between the two test statistics is
asymptotically negligible.

Corollary 1 makes the point that there is a pos-
sibility that the statistic 72~ rejects and 7 does
not reject the null hypothesis when the null hy-
pothesis is true in the case of the analysis of
panel data with missing values.

4. NUMERICAL EXAMPLE

We conduct some Monte Carlo experiments to
compare the tests 72X and r for individual ef-
fects in the error component model. As shown
in corollary 1, the powers of these test statistics
are the same. Thus, we will focus on the prop-
erties of the statistics under the null hypothesis.
Though these test statistics are asymptotically
the same, their finite sample behaviors are un-
known. To determine their properties, we con-
duct some Monte Carlo experiments.

The model is set up as in Baltagi and Chang
[1994].

Yie = 5.0+ 0.5%; + wse,
i=1,...,N, t=1,...,T.

T;; was generated as
T = 0.1¢ + 052541 + wis

and w is distributed uniformly over the inter-
val [-0.5, 0.5]. The initial values of ;o were
chosen as (5+ 10w;p). The error term was spec-
ified as u;; = p; + vy with ul ~ zzdn(O,a )s
vy ~ 1idn(0, 02) and we set 0 =02 +02 =20.
The null hypothesis is Hy: u =0 and the al-
ternative is H,: aﬁ > (0. To determine the finite
sample behavior under the null hypothesis, we
set o2 = 0.

The test statistics being examined are 7B

which is the square-root of the LM test for
the one-way error component model proposed
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Table 1. Rejection probabilities: Bernoulli.

Probability - Ratio of
N of Complete | 7BL T
Missing Series
3/4 0.058 0.058
50 0.8 2/4 0.065 0.064
1/4 0.064 0.058
3/4 0.056 0.055
50 0.4 2/4 0.063 0.052
1/4 0.053 0.051
3/4 0.049 0.049
100 0.8 2/4 0.043 0.042
1/4 0.056 0.055
3/4 0.051 0.050
100 0.4 2/4 0.051 0.050
1/4 0.043 0.042

Table 2. Rejection probabilities: AB sampling.

Ratio of
N AB Complete | 7BL T
Series
3/4 0.050 0.050
50 2,1 2/4 0.065 0.064
1/4 0.049  0.049
3/4 0.0563 0.053
50 3,1 2/4 0.053 0.053
1/4 0.046 0.046
3/4 0.047 0.046
100 2,1 2/4 0.045 0.045
1/4 0.048 0.047
3/4 0.050  0.050
100 3,1 2/4 0.057 0.056
1/4 0.056  0.056

in Baltagi and Li [1990] and 7 which is the
test statistic proposed in the previous section.
To estimate the rejection probabilities, we con-
duct the experiments 1000 times. The nomi-
nal size is set 5%, and T is set to 20. We
consider two kinds of missing structures, one
is a Bernoulli trial, and the other is A-B sam-
pling. A-B sampling is considered in Nishino
and Yajima [1999] and the references therein.
The sampling scheme is that there are A obser-
vations followed by B missing values, repeated
m times. The total number of observations T is
m X (A+ B). The number of available observa-
tions is m x A.

The results of the simulations summarized in
Table 1 and Table 2. In Table 1, we see that the
‘size distortion becomes large when the probabil-
ity of observation being missing increases. As
the sample size increases, the properties of two
test statistics become similar. In the case of A-
B sampling, the difference between 73 and 7
is small. This is because the sequence of A-B
sampling is deterministic and periodic, and is
not random. In such cases, both tests have rea-

sonably good sizes. All rejection probabilities
using 7 are smaller than those of 5L,

5. CONCLUDING REMARK

We examine the statistical properties of a test
statistic for random effects with incomplete
panel data and compare it with the test statis-
tics derived without randomness such as Balt-
agi and Li [1990]. Though the two test statistics
are equivalent asymptotically, there is some dif-
ference in their behavior in finite samples. We
find that the test statistic derived in this pa-
per is conservative when compared with the test
statistic derived in Baltagi and Li [1990]. It is
natural to consider the non-response for query
in the questionnaire to be the outcome of a ran-
dom variable when we do not have any informa-
tion about non-responses since many of house-
hold surveys are based on the random sampling.
It is possible that the test statistic derived with-
out randomness leads upward bias in finite sam-
ple.
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